22 research outputs found

    Non-invasive identification of atrial fibrillation drivers

    Full text link
    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Nowadays the fibrillatory process is known to be provoked by the high-frequency reentrant activity of certain atrial regions that propagates the fibrillatory activity to the rest of the atrial tissue, and the electrical isolation of these key regions has demonstrated its effectiveness in terminating the fibrillatory process. The location of the dominant regions represents a major challenge in the diagnosis and treatment of this arrhythmia. With the aim to detect and locate the fibrillatory sources prior to surgical procedure, non-invasive methods have been developed such as body surface electrical mapping (BSPM) which allows to record with high spatial resolution the electrical activity on the torso surface or the electrocardiographic imaging (ECGI) which allows to non-invasively reconstruct the electrical activity in the atrial surface. Given the novelty of these systems, both technologies suffer from a lack of scientific knowledge about the physical and technical mechanisms that support their operation. Therefore, the aim of this thesis is to increase that knowledge, as well as studying the effectiveness of these technologies for the localization of dominant regions in patients with AF. First, it has been shown that BSPM systems are able to noninvasively identify atrial rotors by recognizing surface rotors after band-pass filtering. Furthermore, the position of such surface rotors is related to the atrial rotor location, allowing the distinction between left or right atrial rotors. Moreover, it has been found that the surface electrical maps in AF suffer a spatial smoothing effect by the torso conductor volume, so the surface electrical activity can be studied with a relatively small number of electrodes. Specifically, it has been seen that 12 uniformly distributed electrodes are sufficient for the correct identification of atrial dominant frequencies, while at least 32 leads are needed for non-invasive identification of atrial rotors. Secondly, the effect of narrowband filtering on the effectiveness of the location of reentrant patterns was studied. It has been found that this procedure allows isolating the reentrant electrical activity caused by the rotor, increasing the detection rate for both invasive and surface maps. However, the spatial smoothing caused by the regularization of the ECGI added to the temporal filtering causes a large increase in the spurious reentrant activity, making it difficult to detect real reentrant patterns. However, it has been found that maps provided by the ECGI without temporal filtering allow the correct detection of reentrant activity, so narrowband filtering should be applied for intracavitary or surface signal only. Finally, we studied the stability of the markers used to detect dominant regions in ECGI, such as frequency maps or the rotor presence. It has been found that in the presence of alterations in the conditions of the inverse problem, such as electrical or geometrical noise, these markers are significantly more stable than the ECGI signal morphology from which they are extracted. In addition, a new methodology for error reduction in the atrial spatial location based on the curvature of the curve L has been proposed. The results presented in this thesis showed that BSPM and ECGI systems allows to non-invasively locate the presence of high-frequency rotors, responsible for the maintenance of AF. This detection has been proven to be unambiguous and robust, and the physical and technical mechanisms that support this behavior have been studied. These results indicate that both non-invasive systems provide information of great clinical value in the treatment of AF, so their use can be helpful for selecting and planning atrial ablation procedures.La fibrilación auricular (FA) es una de las arritmias cardiacas más frecuentes. Hoy en día se sabe que el proceso fibrilatorio está provocado por la actividad reentrante a alta frecuencia de ciertas regiones auriculares que propagan la actividad fibrilatoria en el resto del tejido auricular, y se ha demostrado que el aislamiento eléctrico de estas regiones dominantes permite detener el proceso fibrilatorio. La localización de las regiones dominantes supone un gran reto en el diagnóstico y tratamiento de la FA. Con el objetivo de poder localizar las fuentes fibrilatorias con anterioridad al procedimiento quirúrgico, se han desarrollado métodos no invasivos como la cartografía eléctrica de superficie (CES) que registra con gran resolución espacial la actividad eléctrica en la superficie del torso o la electrocardiografía por imagen (ECGI) que permite reconstruir la actividad eléctrica en la superficie auricular. Dada la novedad de estos sistemas, existe una falta de conocimiento científico sobre los mecanismos físicos y técnicos que sustentan su funcionamiento. Por lo tanto, el objetivo de esta tesis es aumentar dicho conocimiento, así como estudiar la eficacia de ambas tecnologías para la localización de regiones dominantes en pacientes con FA. En primer lugar, ha visto que los sistemas CES permiten identificar rotores auriculares mediante el reconocimiento de rotores superficiales tras el filtrado en banda estrecha. Además, la posición de los rotores superficiales está relacionada con la localización de dichos rotores, permitiendo la distinción entre rotores de aurícula derecha o izquierda. Por otra parte, se ha visto que los mapas eléctricos superficiales durante FA sufren una gran suavizado espacial por el efecto del volumen conductor del torso, lo que permite que la actividad eléctrica superficial pueda ser estudiada con un número relativamente reducido de electrodos. Concretamente, se ha visto que 12 electrodos uniformemente distribuidos son suficientes para una correcta identificación de frecuencias dominantes, mientras que son necesarios al menos 32 para una correcta identificación de rotores auriculares. Por otra parte, también se ha estudiado el efecto del filtrado en banda estrecha sobre la eficacia de la localización de patrones reentrantes. Así, se ha visto que este procedimiento permite aislar la actividad eléctrica reentrante provocada por el rotor, aumentando la tasa de detección tanto para señal obtenida de manera invasiva como para los mapas superficiales. No obstante, este filtrado temporal sobre la señal de ECGI provoca un gran aumento de la actividad reentrante espúrea que dificulta la detección de patrones reentrantes reales. Sin embargo, los mapas ECGI sin filtrado temporal permiten la detección correcta de la actividad reentrante, por lo el filtrado debería ser aplicado únicamente para señal intracavitaria o superficial. Por último, se ha estudiado la estabilidad de los marcadores utilizados en ECGI para detectar regiones dominantes, como son los mapas de frecuencia o la presencia de rotores. Se ha visto que en presencia de alteraciones en las condiciones del problema inverso, como ruido eléctrico o geométrico, estos marcadores son significativamente más estables que la morfología de la propia señal ECGI. Además, se ha propuesto una nueva metodología para la reducción del error en la localización espacial de la aurícula basado en la curvatura de la curva L. Los resultados presentados en esta tesis revelan que los sistemas de CES y ECGI permiten localizar de manera no invasiva la presencia de rotores de alta frecuencia. Esta detección es univoca y robusta, y se han estudiado los mecanismos físicos y técnicos que sustentan dicho comportamiento. Estos resultados indican que ambos sistemas no invasivos proporcionan información de gran valor clínico en el tratamiento de la FA, por lo que su uso puede ser de gran ayuda para la selección y planificaciLa fibril·lació auricular (FA) és una de les arítmies cardíaques més freqüents. Hui en dia es sabut que el procés fibrilatori està provocat per l'activitat reentrant de certes regions auriculars que propaguen l'activitat fibril·latoria a la resta del teixit auricular, i s'ha demostrat que l'aïllament elèctric d'aquestes regions dominants permet aturar el procés fibrilatori. La localització de les regions dominants suposa un gran repte en el diagnòstic i tractament d'aquesta arítmia. Amb l'objectiu de poder localitzar fonts fibril·latories amb anterioritat al procediment quirúrgic s'han desenvolupat mètodes no invasius com la cartografia elèctrica de superfície (CES) que registra amb gran resolució espacial l'activitat elèctrica en la superfície del tors o l'electrocardiografia per imatge (ECGI) que permet obtenir de manera no invasiva l'activitat elèctrica en la superfície auricular. Donada la relativa novetat d'aquests sistemes, existeix una manca de coneixement científic sobre els mecanismes físics i tècnics que sustenten el seu funcionament. Per tant, l'objectiu d'aquesta tesi és augmentar aquest coneixement, així com estudiar l'eficàcia d'aquestes tecnologies per a la localització de regions dominants en pacients amb FA. En primer lloc, s'ha vist que els sistemes CES permeten identificar rotors auriculars mitjançant el reconeixement de rotors superficials després del filtrat en banda estreta. A més, la posició dels rotors superficials està relacionada amb la localització d'aquests rotors, permetent la distinció entre rotors de aurícula dreta o esquerra. També s'ha vist que els mapes elèctrics superficials durant FA pateixen un gran suavitzat espacial per l'efecte del volum conductor del tors, el que permet que l'activitat elèctrica superficial pugui ser estudiada amb un nombre relativament reduït d'elèctrodes. Concretament, s'ha vist que 12 elèctrodes uniformement distribuïts són suficients per a una correcta identificació de freqüències dominants auriculars, mentre que són necessaris almenys 32 per a una correcta identificació de rotors auriculars. D'altra banda, també s'ha estudiat l'efecte del filtrat en banda estreta sobre l'eficàcia de la localització de patrons reentrants. Així, s'ha vist que aquest procediment permet aïllar l'activitat elèctrica reentrant provocada pel rotor, augmentant la taxa de detecció tant pel senyal obtingut de manera invasiva com per als mapes superficials. No obstant això, aquest filtrat temporal sobre el senyal de ECGI provoca un gran augment de l'activitat reentrant espúria que dificulta la detecció de patrons reentrants reals. A més, els mapes proporcionats per la ECGI sense filtrat temporal permeten la detecció correcta de l'activitat reentrant, per la qual cosa el filtrat hauria de ser aplicat únicament per a senyal intracavitària o superficial. Per últim, s'ha estudiat l'estabilitat dels marcadors utilitzats en ECGI per a detectar regions auriculars dominants, com són els mapes de freqüència o la presència de rotors. S'ha vist que en presència d'alteracions en les condicions del problema invers, com soroll elèctric o geomètric, aquests marcadors són significativament més estables que la morfologia del mateix senyal ECGI. A més, s'ha proposat una nova metodologia per a la reducció de l'error en la localització espacial de l'aurícula basat en la curvatura de la corba L. Els resultats presentats en aquesta tesi revelen que els sistemes de CES i ECGI permeten localitzar de manera no invasiva la presència de rotors d'alta freqüència. Aquesta detecció és unívoca i robusta, i s'han estudiat els mecanismes físics i tècnics que sustenten aquest comportament. Aquests resultats indiquen que els dos sistemes no invasius proporcionen informació de gran valor clínic en el tractament de la FA, pel que el seu ús pot ser de gran ajuda per a la selecció i planificació de procediments d'ablació auricular.Rodrigo Bort, M. (2016). Non-invasive identification of atrial fibrillation drivers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75346TESISPremios Extraordinarios de tesis doctorale

    A robust wavelet-based approach for dominant frequency analysis of atrial fibrillation in body surface signals

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at https://doi.org/10.1088/1361-6579/ab97c1.[EN] Objective: Atrial dominant frequency (DF) maps undergoing atrial fibrillation (AF) presented good spatial correlation with those obtained with the non-invasive body surface potential mapping (BSPM). In this study, a robust BSPM-DF calculation method based on wavelet analysis is proposed. Approach: Continuous wavelet transform along 40 scales in the pseudo-frequency range of 3¿30 Hz is performed in each BSPM signal using a Gaussian mother wavelet. DFs are estimated from the intervals between the peaks, representing the activation times, in the maximum energy scale. The results are compared with the traditionally widely applied Welch periodogram and the robustness was tested on different protocols: increasing levels of white Gaussian noise, artificial DF harmonics presence and reduction in the number of leads. A total of 11 AF simulations and 12 AF patients are considered in the analysis. For each patient, intracardiac electrograms were acquired in 15 locations from both atria. The accuracy of both methods was assessed by calculating the absolute errors of the highest DFBSPM (HDFBSPM) with respect to the atrial HDF, either simulated or intracardially measured, and assumed correct if ¿1 Hz. The spatial distribution of the errors between torso DFs and atrial HDFs were compared with atria driving mechanism locations. Torso HDF regions, defined as portions of the maps with |DF ¿ HDFBSPM| ¿ 0.5 Hz were identified and the percentage of the torso occuping these regions was compared between methods. The robustness of both methods to white Gaussian noise, ventricular influence and harmonics, and to lower spatial resolution BSPM lead layouts was analyzed: computer AF models (567 leads vs 256 leads down to 16 leads) and patient data (67 leads vs 32 and 16 leads). Main results: The proposed method allowed an improvement in non-invasive estimation of the atria HDF. For the models the median relative errors were 7.14% for the wavelet-based algorithm vs 60.00% for the Welch method; in patients, the errors were 10.03% vs 12.66%, respectively. The wavelet method outperformed the Welch approach in correct estimations of atrial HDFs in models (81.82% vs 45.45%, respectively) and patients (66.67% vs 41.67%). A low positive BSPM-DF map correlation was seen between the techniques (0.47 for models and 0.63 for patients), highlighting the overall differences in DF distributions. The wavelet-based algorithm was more robust to white Gaussian noise, residual ventricular activity and harmonics, and presented more consistent results in lead layouts with low spatial resolution. Significance: Estimation of atrial HDFs using BSPM is improved by the proposed wavelet-based algorithm, helping to increase the non-invasive diagnostic ability in AF.This study was supported in part by grants from Sao Paulo Research Foundation (2017/19775-3), Instituto de Salud Carlos III FEDER (Fondo Europeo de Desarrollo Regional PI17/01106) and Generalitat Valenciana Grants (AICO/2018/267).Marques, V.; Rodrigo Bort, M.; Guillem Sánchez, MS.; Salinet, J. (2020). A robust wavelet-based approach for dominant frequency analysis of atrial fibrillation in body surface signals. Physiological Measurement. 41(7):1-14. https://doi.org/10.1088/1361-6579/ab97c1S11441

    Atrial location optimization by electrical measures for Electrocardiographic Imaging

    Full text link
    [EN] Background: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based on an intrinsic electrical parameter of the ECGI solution. Methods: In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial anatomy for +/- 2.5 cm and +/- 30 degrees on each axis. An automatic optimization method based on the L-curve curvature was used to estimate the original position using exclusively non-invasive data. Results: The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 +/- 0.5 cm in position and 16.0 +/- 10.7 degrees in orientation. With these approximate locations, the obtained electrophysiological maps reduced the average error in atrial rate measures from 1.1 +/- 1.1 Hz to 0.5 +/- 1.0 Hz and in the phase singularity position from 7.2 +/- 4.0 cm to 1.6 +/- 1.7 cm (p < 0.01). Conclusions: This proposed automatic optimization may help to solve spatial inaccuracies provoked by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different medical image systems.This work was supported in part by: Generalitat Valenciana Grants [APOSTD/2017] and projects [GVA/2018/103]; Nvidia Corporation with GPU QUADRO P6000 donation.Gisbert Soler, V.; Jiménez-Serrano, S.; Roses-Albert, E.; Rodrigo Bort, M. (2020). Atrial location optimization by electrical measures for Electrocardiographic Imaging. Computers in Biology and Medicine. 127:1-8. https://doi.org/10.1016/j.compbiomed.2020.104031S18127Cuculich, P. S., Zhang, J., Wang, Y., Desouza, K. A., Vijayakumar, R., Woodard, P. K., & Rudy, Y. (2011). The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infarction. Journal of the American College of Cardiology, 58(18), 1893-1902. doi:10.1016/j.jacc.2011.07.029Revishvili, A. S., Wissner, E., Lebedev, D. S., Lemes, C., Deiss, S., Metzner, A., … Kuck, K.-H. (2015). Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace, 17(8), 1282-1288. doi:10.1093/europace/euu339Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709Wang, Y., Schuessler, R. B., Damiano, R. J., Woodard, P. K., & Rudy, Y. (2007). Noninvasive electrocardiographic imaging (ECGI) of scar-related atypical atrial flutter. Heart Rhythm, 4(12), 1565-1567. doi:10.1016/j.hrthm.2007.08.019Milan Horáček, B., & Clements, J. C. (1997). The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Mathematical Biosciences, 144(2), 119-154. doi:10.1016/s0025-5564(97)00024-2Rodrigo, M., Climent, A. M., Liberos, A., Hernandez-Romero, I., Arenal, A., Bermejo, J., … Guillem, M. S. (2018). Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE Transactions on Medical Imaging, 37(3), 733-740. doi:10.1109/tmi.2017.2707413Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017Dolan, E. D., Lewis, R. M., & Torczon, V. (2003). On the Local Convergence of Pattern Search. SIAM Journal on Optimization, 14(2), 567-583. doi:10.1137/s1052623400374495Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008Miller, J. M., Kalra, V., Das, M. K., Jain, R., Garlie, J. B., Brewster, J. A., & Dandamudi, G. (2017). Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation. Journal of the American College of Cardiology, 69(10), 1247-1256. doi:10.1016/j.jacc.2016.11.079Perez-Alday, E. A., Thomas, J. A., Kabir, M., Sedaghat, G., Rogovoy, N., van Dam, E., … Tereshchenko, L. G. (2018). Torso geometry reconstruction and body surface electrode localization using three-dimensional photography. Journal of Electrocardiology, 51(1), 60-67. doi:10.1016/j.jelectrocard.2017.08.035Schulze, W. H. W., Mackens, P., Potyagaylo, D., Rhode, K., Tülümen, E., Schimpf, R., … Dössel, O. (2014). Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging. Biomedical Engineering / Biomedizinische Technik, 59(6). doi:10.1515/bmt-2014-0018Ghanem, R. N., Ramanathan, C., Ping Jia, & Rudy, Y. (2003). Heart-surface reconstruction and ecg electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Transactions on Medical Imaging, 22(10), 1307-1318. doi:10.1109/tmi.2003.818263Lee, J., Thornhill, R. E., Nery, P., Robert deKemp, Peña, E., Birnie, D., … Ukwatta, E. (2019). Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping. Computers in Biology and Medicine, 111, 103341. doi:10.1016/j.compbiomed.2019.103341Weiss, E., Wijesooriya, K., Dill, S. V., & Keall, P. J. (2007). Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. International Journal of Radiation Oncology*Biology*Physics, 67(1), 296-307. doi:10.1016/j.ijrobp.2006.09.009Wikström, K., Isacsson, U., Nilsson, K., & Ahnesjö, A. (2018). Reproducibility of heart and thoracic wall position in repeated deep inspiration breath holds for radiotherapy of left-sided breast cancer patients. Acta Oncologica, 57(10), 1318-1324. doi:10.1080/0284186x.2018.1490027Messinger-Rapport, B. J., & Rudy, Y. (1986). The Inverse Problem in Electrocardiography: A Model Study of the Effects of Geometry and Conductivity Parameters on the Reconstruction of Epicardial Potentials. IEEE Transactions on Biomedical Engineering, BME-33(7), 667-676. doi:10.1109/tbme.1986.325756Messinger-Rapport, B. J., & Rudy, Y. (1990). Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circulation Research, 66(4), 1023-1039. doi:10.1161/01.res.66.4.1023Coll-Font, J., & Brooks, D. H. (2018). Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01727Van der Waal, J., Meijborg, V., Schuler, S., Coronel, R., & Oostendorp, T. (2020). In silico validation of electrocardiographic imaging to reconstruct the endocardial and epicardial repolarization pattern using the equivalent dipole layer source model. Medical & Biological Engineering & Computing, 58(8), 1739-1749. doi:10.1007/s11517-020-02203-yChamorro-Servent, J., Dubois, R., & Coudière, Y. (2019). Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.0027

    Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach

    Full text link
    [EN] Although standard 12-lead ECG is the primary technique in cardiac diagnostic, detecting different cardiac diseases using single or reduced number of leads is still challenging. The purpose of our team, itaca-UPV, is to provide a method able to classify ECG records using minimal lead information in the context of the 2021 PhysioNet/Computing in Cardiology Challenge, also using only a single-lead. We resampled and filtered the ECG signals, and extracted 109 features mostly based on Hearth Rhythm Variability (HRV). Then, we used selected features to train one feed-forward neural network (FFNN) with one hidden layer for each class using a One-vs-Rest approach, thus allowing each ECG to be classified as belonging to none or more than one class. Finally, we performed a 3-fold cross validation to assess the model performance. Our classifiers received scores of 0.34, 0.34, 0.27, 0.30, and 0.34 (ranked 26th, 21th, 29th, 25th, and 22th out of 39 teams) for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions. Accuracy in detection can be improved adding more disease-specific features.Jiménez-Serrano, S.; Rodrigo Bort, M.; Calvo Saiz, CJ.; Castells, F.; Millet Roig, J. (2021). Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach. 1-4. https://doi.org/10.22489/CinC.2021.1091

    Predicting acute termination and non-termination during ablation of human atrial fibrillation using quantitative indices

    Get PDF
    Background: Termination of atrial fibrillation (AF), the most common arrhythmia in the United States, during catheter ablation is an attractive procedural endpoint, which has been associated with improved long-term outcome in some studies. It is not clear, however, whether it is possible to predict termination using clinical data. We developed and applied three quantitative indices in global multielectrode recordings of AF prior to ablation: average dominant frequency (ADF), spectral power index (SPI), and electrogram quality index (EQI). Methods: In N = 42 persistent AF patients (65 ± 9 years, 14% female) we collected unipolar electrograms from 64-pole baskets (Abbott, CA). We studied N = 17 patients in whom AF terminated during ablation ('Term') and N = 25 in whom it did not ('Non-term'). For each index, we determined its ability to predict ablation by computing receiver operating characteristic (ROC) and calculated the area under the curve (AUC). Results: The ADF did not differ for Term and Non-term patients at 5.28 ± 0.82 Hz and 5.51 ± 0.81 Hz, respectively (p = 0.34). Conversely, the SPI for these two groups was. 0.85 (0.80-0.92) and 0.97 (0.93-0.98) and the EQI was 0.61 (0.58-0.64) and 0.56 (0.55-0.59) (p < 0.0001). The AUC for predicting AF termination for the SPI was 0.85 ([0.68, 0.95] 95% CI), and for the EQI, 0.86 ([0.72, 0.95] 95% CI). Conclusion: Both the EQI and the SPI may provide a useful clinical tool to predict procedural ablation outcome in persistent AF patients. Future studies are required to identify which physiological features of AF are revealed by these indices and hence linked to AF termination or non-termination

    Identification of atrial fibrillation drivers by means of concentric ring electrodes

    Get PDF
    The prevalence of atrial fibrillation (AF) has tripled in the last 50 years due to population aging. High-frequency (DFdriver) activated atrial regions lead the activation of the rest of the atria, disrupting the propagation wavefront. Fourier based spectral analysis of body surface potential maps have been proposed for DFdriver identification, although these approaches present serious drawbacks due to their limited spectral resolution for short AF epochs and the blurring effect of the volume conductor. Laplacian signals (BC-ECG) from bipolar concentric ring electrodes (CRE) have been shown to outperform the spatial resolution achieved with conventional unipolar recordings. Our aimed was to determine the best DFdriver estimator in endocardial electrograms and to assess the BC-ECG capacity of CRE to quantify AF activity non-invasively

    Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications

    Full text link
    [EN] Rotor-guided ablation has opened new perspectives into the therapy of atrial fibrillation (AF). Analysis of the spatio-temporal cardiac excitation patterns in the frequency and phase domains has demonstrated the importance of rotors in research models of AF, however, the dynamics and role of rotors in human AF are still controversial. In this review, the current knowledge gained through research models and patient data that support the notion that rotors are key players in AF maintenance is summarized. We report and discuss discrepancies regarding rotor prevalence and stability in various studies, which can be attributed in part to methodological differences among mapping systems. Future research for validation and improvement of current clinical electrophysiology mapping technologies will be crucial for developing mechanistic-based selection and application of the best therapeutic strategy for individual AF patient, being it, pharmaceutical, ablative, or other approach.This work was supported in part by grants from the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882, PI13-00903, and PI14/00857), Spanish Society of Cardiology (Clinical Research Grant 2015), Generalitat Valenciana (ACIF/2013/021), Innovation (Red RIC, PLE2009-0152), and NHLBI (P01-HL039707, P01-HL087226, and R01-HL118304).Guillem Sánchez, MS.; Climent, AM.; Rodrigo Bort, M.; Fernandez-Aviles, F.; Atienza, F.; Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research. 109(4):480-492. https://doi.org/10.1093/cvr/cvw011S480492109

    Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms

    Full text link
    [EN] [Background] Phase mapping has become a broadly used technique to identify atrial reentrant circuits for ablative therapy guidance. This work studies the phase mapping process and how the signal nature and its filtering affect the reentrant pattern characterization in electrogram (EGM), body surface potential mapping, and electrocardiographic imaging signals. [Methods and Results] EGM, body surface potential mapping, and electrocardiographic imaging phase maps were obtained from 17 simulations of atrial fibrillation, atrial flutter, and focal atrial tachycardia. Reentrant activity was identified by singularity point recognition in raw signals and in signals after narrow band-pass filtering at the highest dominant frequency (HDF). Reentrant activity was dominantly present in the EGM recordings only for atrial fibrillation and some atrial flutter propagations patterns, and HDF filtering allowed increasing the reentrant activity detection from 60% to 70% of time in atrial fibrillation in unipolar recordings and from 0% to 62% in bipolar. In body surface potential mapping maps, HDF filtering increased from 10% to 90% the sensitivity, although provoked a residual false reentrant activity ¿30% of time. In electrocardiographic imaging, HDF filtering allowed to increase ¿100% the time with detected rotors, although provoked the apparition of false rotors during 100% of time. Nevertheless, raw electrocardiographic imaging phase maps presented reentrant activity just in atrial fibrillation recordings accounting for ¿80% of time. [Conclusions] Rotor identification is accurate and sensitive and does not require additional signal processing in measured or noninvasively computed unipolar EGMs. Bipolar EGMs and body surface potential mapping do require HDF filtering to detect rotors at the expense of a decreased specificity.This study was supported, in part, by Universitat Politecnica de Valencia through its research initiative program; Generalitat Valenciana Grants (ACIF/2013/021); the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882, PI13-00903, PI14/00857, PI16/01123, TEC2013-46067-R, DTS16/0160, and IJCI-2014-22178); Spanish Society of Cardiology (Grant for Clinical Research in Cardiology 2015); Spanish Ministry of Science and Innovation (Red RIC RD12.0042.0001); and the National Heart, Lung, and Blood Institute (P01-HL039707, P01-HL087226, and Q1 R01-HL118304) and cofounded by FEDER.Rodrigo Bort, M.; Martínez Climent, A.; Liberos Mascarell, A.; Fernández-Avilés, F.; Berenfeld, O.; Atienza, F.; Guillem Sánchez, MS. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation Arrhythmia and Electrophysiology. 10(9):1-13. https://doi.org/10.1161/CIRCEP.117.005008S113109Allessie, M., & de Groot, N. (2014). CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation. The Journal of Physiology, 592(15), 3167-3170. doi:10.1113/jphysiol.2014.271809Narayan, S. M., & Zaman, J. A. B. (2016). Mechanistically based mapping of human cardiac fibrillation. The Journal of Physiology, 594(9), 2399-2415. doi:10.1113/jp270513Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011Narayan, S. M., Krummen, D. E., Clopton, P., Shivkumar, K., & Miller, J. M. (2013). Direct or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation. Journal of the American College of Cardiology, 62(2), 138-147. doi:10.1016/j.jacc.2013.03.021Berenfeld, O., Ennis, S., Hwang, E., Hooven, B., Grzeda, K., Mironov, S., … Jalife, J. (2011). Time- and frequency-domain analyses of atrial fibrillation activation rate: The optical mapping reference. Heart Rhythm, 8(11), 1758-1765. doi:10.1016/j.hrthm.2011.05.007Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., & Rudy, Y. (2016). Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 9(11). doi:10.1161/circep.116.004409Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023Rodrigo, M., Climent, A. M., Liberos, A., Calvo, D., Fernández-Avilés, F., Berenfeld, O., … Guillem, M. S. (2016). Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis. Annals of Biomedical Engineering, 44(8), 2364-2376. doi:10.1007/s10439-015-1534-xPEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010ALHUSSEINI, M., VIDMAR, D., MECKLER, G. L., KOWALEWSKI, C. A., SHENASA, F., WANG, P. J., … RAPPEL, W.-J. (2017). Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sites of Local Termination During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 28(6), 615-622. doi:10.1111/jce.1317

    Atrial fibrillation signatures on intracardiac electrograms identified by deep learning

    Get PDF
    Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet suboptimally groups AF, flutter or tachycardia (AT) together as 'high rate events'. This may delay or misdirect therapy. Objective: We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram (EGM) signatures. Methods: We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study (25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We explained DL using computer models to assess the impact of controlled variations in shape, rate and timing on AF/AT classification in 246,067 EGMs reconstructed from clinical data. Results: DL identified AF with AUC of 0.97 ± 0.04 (unipolar) and 0.92 ± 0.09 (bipolar). Rule-based classifiers misclassified ∼10-12% of cases. DL classification was explained by regularity in EGM shape (13%) or timing (26%), and rate (60%; p 15% timing variation, <0.48 correlation in beat-to-beat EGM shapes and CL < 190 ms (p < 0.001). Conclusions: Deep learning of intracardiac EGMs can identify AF or AT via signatures of rate, regularity in timing or shape, and specific EGM shapes. Future work should examine if these signatures differ between different clinical subpopulations with AF

    Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry

    Get PDF
    Background: The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces. Methods: We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps. Results: Patients (59.4±12.7 yrs, 60% M) showed 1.7±0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1). Conclusions: AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning
    corecore